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Abstract

We present Bayesian statistics and Gibbs sampling,
an MCMC simulation technique, as tools for making
inferences in stochastic frontier models for panel data
from the banking sector. In our empirical example, the
Bayesian approach is applied to estimate a short-run
frontier cost function for N = 58 branches of a Polish
commercial bank, observed over T = 4 quarters of one
year. We use a translog cost function (with regularity
conditions imposed for an ’average’ branch) and treat
inefficiency as a random individual effect, assuming
a varying efficiency distribution (VED) specification
proposed by Koop, Osiewalski and Steel (1997).

Keywords: Bayesian econometrics, panel data, cost
models, microeconomics of bank.

JEL: C11, C23, D24, G21

W artykule prezentujemy statystyke bayesowska i préb-
kowanie Gibbsa (technike symulacji typu MCMC) ja-
ko narzedzia wnioskowania w stochastycznych mo-
delach granicznych dla danych panelowych z sektora
bankowego. W naszym przykladzie empirycznym po-
dejscie bayesowskie stuzy do estymacji krétkookresowej
graniczne]j funkcji kosztu dla 58 oddzialéw polskiego
banku komercyjnego, na podstawie danych z 4 kwar-
tatéw jednego roku. Przyjmujemy funkcje kosztu typu
translog (z warunkami regularno$ci dla przecietnego od-
dziatu), a nieefektywnos$c traktujemy jak losowy efekt
indywidualny, wykorzystujac specyfikacje o zmiennym
rozkladzie efektywnosci (VED), ktéra zaproponowali
Koop, Osiewalski i Steel (1997).

Stowa kluczowe: ekonometria bayesowska, dane pa-
nelowe, modele kosztu, mikroekonomia banku.
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1. Introduction

The stochastic frontier or composed error framework was
first introduced in Meeusen and van den Broeck (1977)
and Aigner et al. (1977) and has been used in many
empirical applications. In particular, stochastic frontier
models have been applied in studies of production and
cost efficiency in the banking sector; see Ferrier, Lovell
(1990), Cebenoyan et al. (1993), Bauer, Hancock (1993),
Mester (1993; 1997), Berger, Mester (1997), Berger, De
Young (1997), Kraft, Tirtiroglu (1997), Altunbas et al.
(2000). All these empirical studies used the sampling
theory (classical) methods of inference.!

Van den Broeck, Koop, Osiewalski and Steel (1994),
hereafter BKOS, Koop, Steel and Osiewalski (1995), and
Koop, Osiewalski and Steel, hereafter KOS (1994a; 1994b;
1997; 1999; 2000a; 2000b) used Bayesian methods to
analyze stochastic frontier models and argued that such
methods had several advantages over their classical
counterparts in the treatment of these models. Most
importantly, the Bayesian approach enables to provide
exact finite sample results for any feature of interest and
to take fully into account parameter uncertainty. The
Bayesian statistical methodology has been successfully
applied in various empirical issues, ranging from
hospital efficiencies in KOS (1994b; 1997) to analyses of
the growth of countries in KOS (1999; 2000a; 2000b). In
this paper we apply the Bayesian approach to model the
short-run cost frontier and to measure cost efficiency of
bank branches.

There are different reasons for focusing on branches
of one of Polish commercial banks; some reasons are
practical and rather specific to the situation of the
banking sector in Poland, other are more general and of
methodological nature. First of all, it was much easier
to collect (or, in fact, to construct — see Marzec 2000)
reliable and fully comparable data representing activities
of all branches of a big Polish bank than to find a data
set of similar quality that would represent a relatively
homogenous (and not too small) group of Polish banks.
Thus, focusing on branches of one bank helped us to
avoid problems with heterogeneity, discussed by Mester
(1997). Second, branches (as opposed to specialized
departments or units) are not involved in financial
services that would be called “nontraditional activities”.
As regards the case we report in the empirical example,
the branches under study represented traditional
banking technology which can be modelled within the
framework of Sealey and Lindley (1977). This means
we could focus on the presentation of the Bayesian
statistical methodology at work and not on addressing

1 In Polish efficiency studies for the banking sector, mathematical programming
techniques (mainly Data Envelopment Analysis, DEA) prevail; see, e.g., Mielnik,
Lawrynowicz (2002) and Pawlowska (2003a; 2003b).
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new questions related to the economics of a bank.?
Third, modelling the technology used by branches and
making efficiency comparisons among them constitute
a very useful tool for the management of the bank. The
analysis of activities of bank branches was presented
by Zardokoohi and Kolari (1994), Berger et al. (1997)
and others, using mainly mathematical programming
techniques.

In our first preliminary study we used only cross-
sectional data and a very simplified cost frontier; see
Osiewalski, Marzec (1998). This work is based on a
more mature approach, already adopted in our papers
published only in Polish; see Marzec, Osiewalski (2001;
2003). Here we summarise and extend our previous
research. Thus, we use panel data and a translog
cost function. We show how inferences on technology
and individual cost efficiencies of bank branches
can be made using Bayesian random effects models
proposed in KOS (1997) and a variant of the Gibbs
sampler developed therein. We adopt the general Varying
Efficiency Distribution (VED) model specification and
apply a Highest Posterior Density (HPD) test to examine
statistical validity of the simpler, nested CED (Common
Efficiency Distribution) model. Our approach enables to
impose (locally) all economic regularity conditions on
the short-run translog cost model.

2. The Bayesian Stochastic Frontier Model

The basic sampling model considered here can be
written as

where y;; is the natural logarithm of cost for branch i
attimet ({ = 1,..., N; t = 1,..., T); x;; is a row vector of
exogenous variables; h — a known measurable function
and g, - a vector of k unknown parameters define the
deterministic part of the frontier and represent technology
common to all branches (the translog specification is
used in the empirical part); and v;; and z;; are random
terms, one symmetric about zero and the other non-
negative. In the case of a cost frontier, z;; captures the
overall cost inefficiency, reflecting cost increases due to
both technical and allocative inefficiency of branch i at
time t. For the translog cost model, treated as the true
description of technology, Kumbhakar (1997) derives
the exact relationship between allocative inefficiency
in the cost share equations and in the cost function,
which indicates that z;; in (1) are not independent of
the exogenous variables and the parameters in the cost
function. However, the translog specification is generally
viewed as an approximation to the unknown true cost

2 Rogers (1998) studied the role of nontraditional activities and their importan-
ce for measuring efficiency.
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function, and the common assumption within the
stochastic frontier framework is that inefficiency terms
are independent of the systematic part of the cost model.
Thus, this independence assumption will be maintained
in our analysis.

Note that our framework is suitable for panel data,
but the case of just one cross-section is easily covered as
it corresponds to T = 1. Here we make the assumption
that the inefficiency level is an individual (branch)
effect, i.e. z;; = z; (t = 1, ..., T), as in KOS (1994b; 1997);
see also Pitt, Lee (1981, Model I) and Schmidt, Sickles
(1984). This assumption is motivated by our empirical
example, where we use panel data corresponding to
only four quarters of one year (T = 4). In such a short
period of time, systematic changes in efficiency cannot
be expected, so we use the data to improve precision
of inferences on individual efficiency treated as a
branch-specific characteristic. Generally, time-invariant
efficiency will be measured as r; = exp(-z;), which is an
easily interpretable quantity in (0, 1]. We also assume
that z; and v;; are independent of each other and v;; are
independent across branches and time.

Using yearly data for many countries observed over
longer periods, KOS (1999; 2000a; 2000b) follow an
alternative strategy and assume that z; is independent
over both i and t (conditionally upon the parameters
necessary to describe its sampling distribution); see
also Pitt and Lee (1981, Model II). Osiewalski and Steel
(1998) discussed numerical tools directly applicable in
specifications that do not impose any panel structure.
Here we use a version of the Gibbs sampler designed
for random individual effects models in KOS (1997); our
Gibbs sampler draws from the region (in the parameters
space) where economic regularity holds.

Bayesian analysis requires specifying the Bayesian
model, i.e. the joint distribution of the observables, latent
variables and parameters, usually conditional on the
values of the explanatory variables (assumed exogenous).
According to the common statistical practice, we first
formulate the sampling distribution (of the observables
and latent variables given parameters) and then the prior
distribution (the marginal distribution of the parameters
of the sampling specification). In order to specify a
parametric sampling distribution for the observables y;
and unobserved z;, we assume that vy is N(0,0%), ie.
Normal with zero mean and constant variance o2, and
z; is Exponential with mean (and standard deviation)
A;. The mean of z; can depend on some (say, m-1)
exogenous variables s; (j = 2,..., m) explaining possible
systematic differences in efficiency levels. We assume

k= l;[tb;’ )

where ¢; > 0 are unknown parameters and s;; = 1. If
m > 1, the distributions of z; can differ for different
i and thus in KOS(1997) this specification is called
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the Varying Efficiency Distribution (VED) model. If m = 1,
then &; = ¢;! and all inefficiency terms constitute
independent draws from the same distribution. This
important special case is called the Common Efficiency
Distribution (CED) model. Some non-Bayesian empirical
works in the field of bank efficiency analysis used a two-
step approach where the efficiency estimates obtained
at the first stage were regressed (at the second stage) on
additional explanatory variables; see, Cebenoyan et al.
(1993), Mester (1993), Berger, Mester (1997), Berger, De
Young (1997), and Kraft, Tirtiroglu (1997). While such
two-step approaches can serve as very crude statistical
techniques, our Bayesian VED model yields a coherent
framework for both estimation and testing of influences
of exogenous factors on individual efficiency.

Note that the density of all y;; and z; given xy,
s; = (Si1s--» Siy) and @ = (B, 0% ¢y,..., o) is the
product of NT Normal and N Exponential densities. This
leads to the following Bayesian model:
2.0,X,S)

X,S) = p(O)p(z O,X,S)p(y

L[ Te Jf[f,é(n

p(y,z,(-)

o p(e)]_ﬁ[{fg[z,

h(x”,ﬁ)+z,,oz):| (3)

where p(@) denotes the prior density, fy(.|ab) is the
(univariate) Normal density with mean a and variance
b, and f5(.|a,b) is the Gamma density with mean a/b
and variance a/b? (a = 1 corresponds to the Exponential
distribution).

In principle, the prior distribution of @ can be any
distribution, but it is usually preferred not to introduce
too much subjective information about the parameters.
Therefore, we use the following prior structure:

p(9)=17(0’2)p(ﬁ)p(¢)°cfG(G’z\%no,%cu)f(BGB)]jfo(¢/\1,gj),
(4)

which reflects the lack of prior knowledge about the
frontier parameters B, except for regularity conditions
p €B imposed by economic theory and represented by
the indicator function I(.). Alternatively, we could use a
proper prior distribution on g, possibly truncated to the
region of regularity. Typically, we shall choose the prior
hyperparameters ny > 0 and ¢ > 0 so as to represent very
weak prior information on the precision of the stochastic
frontier. In models without panel structure, we cannot
take as the prior density for o 2 the kernel of the limiting
case where ¢y = 0 because this would result in the lack
of existence of the posterior distribution; see Ferndndez
et al. (1997). Since we treat here the inefficiency terms
as time-invariant individual effects, the use of the usual
Jeffreys type prior for 62 (which corresponds to the
Gamma kernel with ny = ¢y = 0) is allowed. For the m
parameters of the efficiency distribution we take proper,
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independent Exponential priors in order to avoid the
pathology described by Ritter (1993) and discussed in
more general terms by Ferndndez et al. (1997). Following
KOS (1994b, 1997), we use g; = 1 for j > 1 and take
g1 = -In (r*) where r* € (0, 1) is the hyperparameter
to be elicited. In the CED model (m = 1), r* can be
interpreted as the prior median efficiency, because it
is exactly the median of the marginal prior distribution
of individual efficiency r; = exp (-z;); see BKOS (1994).
In the VED case (m > 1), our prior for ¢ = (¢1,..., ¢5)
is quite non-informative and centered over the prior
for the CED model. The prior on ¢, a parameter which
is common to all branches, induces links between the
branch-specific inefficiency terms.

3. Bayesian Inference using Gibbs sampling

Since an important aspect of any empirical analysis
of production is making inferences not only on the
parameters describing technology, but also on individual
efficiencies of observed units (here: branches), there is
no need to integrate out unobserved z;’s from the joint
density (3). After having observed the data, the Bayesian
approach combines all the information about the
unknown quantities in their posterior density p(z, 0 | y,X,S)
proportional to (3). As this is a non-standard and highly
multivariate density, the crucial task of any applied
Bayesian study is “to calculate relevant summaries
of the posterior distribution, to express the posterior
information in a usable form, and to serve as formal
inferences if appropriate. It is in the task of summarizing
that computation is typically needed.” (O’'Hagan 1994,
p- 205). As KOS (1997) showed, a Markov Chain
Monte Carlo technique known as Gibbs sampling is
a particularly easy and efficient tool for simulating
samples from the posterior distribution and therefore for
approximating its relevant summaries.

Gibbs sampling is a technique for obtaining a sample
from a joint distribution of a random vector e by taking
random draws from only full conditional distributions. A
detailed description of the technique can be found in e.g.
Casella, George (1992), and Tierney (1994). Suppose we
are able to partition & into (o, ..., o, in such a way that
sampling from each of the conditional distributions (of o
given the remaining subvectors; i = 1,..., p) is relatively
easy. Then the Gibbs sampler consists of drawing from
these distributions in a cyclical way, that is, given the
gth draw, @ (@, the next draw, @ (@Y, is obtained in the
following pass through the sampler:

@@+ is drawn from p(a, | a,= aZ(Q],...,ap = ap@]),
a 5@V is drawn from p(ay | @1=a TV as=a;9,..,
@),

a, = a

p

p

a0V is drawn from ple , | @ =2, T*Y,..., @ = @, 07Y).
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Note that each pass consists of p steps, i.e. drawings
of the p subvectors of . The starting point, a(©), is
arbitrary. Under certain general conditions (irreducibility
and aperiodicity as described in e.g. Tierney (1994), the
distribution of & (@ converges to the joint distribution,
p(a), as q tends to infinity. Thus, in an asymptotic sense,
we draw a sample directly from the joint distribution.
In practical applications we have to discard a (large)
number of passes before convergence to joint distribution
pla) is reached.

In order to efficiently use Gibbs sampling to make
posterior inferences on both the parameters and branch
efficiencies, we have to consider the joint posterior density
ofzand @, p(z, 0 | y,X,S) where z is the N x 1 vector of all
the z;s. Note that the dimension is then N + k + m +1,
greater than the number of observed units. Despite this
high dimensionality, the steps involved in the Gibbs
sampler are very easy to implement.

Given 1z, the frontier parameters [p,o‘z] are
independent of ¢ and can be treated as the parameters
of the (linear or nonlinear) Normal regression model in
(3). Thus, we obtain the following full conditionals for
o2 and g:

p(o_z ‘ y,X,S,Z,ﬁ,¢)= p(o.—l ‘ Y’X’L'}) (5]
=f6[6-z"o+2T'N,;{c0 +z(y“_z,.—h(x,.,,|3))ZH
plBly.X.8.2.02.0)=pply.X.2.07)

<l(pe B)exp{—éo’z Y-z h(xn,B))z}- (6)

The full conditional posterior densities of ¢; (j = 1,
..., m) have the general form:

P(¢j [y, X, Ssz’ﬁ’o'iz"b(—/) ) = P(¢, | S’¢l—f))

°CeXP[—QZZfDuJXfc(%1+zswg.f] )

where

b, =11¢7 (8)

J#r

forr=1,..,m (Dj =1 whenm = 1) and ¢, denotes
¢ without its jth element. Since s;; = 1, the conditional
of ¢, is Gamma with parameters 1 + N and g; + z;Dq4
+ ... + znDpy-

Conditionally on the parameters and the data, the

e Z N]’
has a truncated Normal distribution with density which

vector of unobserved inefficiency terms z = (z;

is the product of N independent truncated Normal

N
p(zy,X,S,ﬂ)me‘N[zf
i=1

e T’lo'zﬁgﬁj" ,TIO'ZJI(z[ >0)
j=1

(9)
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densities; see KOS(1997). In (9) 7; and X; are simple
averages of y;; and x;; over time. From (9) we can easily
draw z;s given the data and the parameters. These draws
are immediately transformed into efficiency indicators
r; = exp (-z;). Thus, this N-dimensional step of each pass
through our Gibbs sampler is quite simple.

Depending on the form of the frontier and on the
values of s;; for j > 1, the full conditionals for g and for
¢; / = 2, ..., m) can be quite easy or very difficult to draw
from. Drawing from nonstandard conditional densities
within the Gibbs sampler requires special techniques,
like rejection methods or the Metropolis-Hastings
algorithm (see e.g. Tierney 1994 or O’Hagan 1994).
KOS (1994a; 1994b) used variants of the Metropolis-
Hastings technique in the cases of a non-linear frontier
or continuous s;;, respectively. These hybrid procedures
imply a substantial added complexity in simulations
from the posterior distribution and require additional
input from the user. Therefore, following Osiewalski
and Steel (1998) we stress two special cases where
considerable simplifications are possible:

(i) linearity of the frontier,

(i) 0-1 dummies for Sij (j=2..m).

If h(x;p) = x;p then (6) is a k-variate Normal
density, possibly truncated due to regularity conditions.
That is, we have

pBly.X.S.2.02.8) (B e B) /4 (BIp.o?(xx)") (1)

where (11)

B=(XX)'X(y-2z®1,)

Ly is a vector of ones, z®p denotes the Kronecker pro-
duct of z and v, and y and X denote a NT x 1 vector of
Vis and a NT x k matrix with x;s as rows, respectively.
Cobb-Douglas or translog frontiers serve as examples of
linearity in g; see Koop et al. (1995) and KOS (1997;
1999; 2000a; 2000b).

The dichotomous character of the variables
explaining efficiency differences (sjy,..., S;,) greatly
simplifies (7), which simply becomes a Gamma density:

N N
1+zsih’gl1 + ZsihziDth ;o (12)
i i1

see KOS (1997). From the purely numerical perspective,
it pays to dichotomize these original variables in s;
which are not 0-1 dummies.

P(¢h | S’Z’¢(—h)): f(;[q)h

The above discussion confirms that the Bayesian
stochastic frontier cost model, considered in this paper,
can be analyzed using Gibbs sampling. That is, even
though the marginal posteriors of @ and z; are unwieldy,
the conditionals for a suitable partition of the set of
unknown quantities are much easier to work with. By
taking a long enough sequence of successive draws from
the conditional posterior densities, each conditional on
previous draws from the other conditional densities, we
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can create a sample that can be treated as coming from
the joint posterior distribution. The posterior expectation
of any arbitrary function of interest, g (@, z; y, X, S), can
be approximated by its sample mean, g*, based on M
passes (after convergence has been assured):

N 1 &
E[g(ﬂ,z;y,X,S]y,X,S]z 2 (y.X,8)= HZg(ﬂ“’,z“);y,X,S).
I=1

4. Modelling Variable Costs of Bank Branches

We illustrate the Bayesian stochastic frontier analysis
using the data from N = 58 branches of one of Polish
commercial banks observed over T = 4 quarters of one
year. Our short-run translog cost model takes the form:

InVC, =g+ B InW, , + B, nW,  + f;InQ, + B;In K, + S InW, , InW,
+fenW, ,InQ, + B, W, ,InK, + fInW, , InQ, + f,InW, , InK;
+Bon0, K, + B, (W, . f + A.(nw,, f+ £,(n0,F (14
+ ﬂu(ln K; )z TV tz;

where the following notation is adopted:

VC = cost of labour (personnel expenses) + cost of
financial capital (interest expenses) + cost of computers,
software and other goods and services purchased from
outside suppliers,

W; = price of labour = (personnel expenses)/
(number of full-time equivalent employees),

Wp = price of deposits and other borrowed money
= (interest expense)/(volume),

K = office space (in square meters),

Q =

excess of deposits over loans (if positive).

aggregate volume of different loans + the

In our VED specification for inefficiency term Zj, we
use three dummies to model its mean A;:

Sjg = 1 if branch i had more deposits than loans
(sj9 = 0 otherwise),

s;3 = 1 if volume of loans was greater than PLN 100
million (s;3 = 0 otherwise),

sjy =1 for branches with subbranches (s;y = 0
otherwise);
thus, m = 4 and s;; = 1. Our conjecture is that fewer de-
posits than loans means higher costs because of char-
ge for “external” refinancing (thus, s;, = 1 should cor-
respond to higher efficiency, ¢, > 1); the larger branch
and the more complicated its structure, the lower ef-
ficiency (¢3 < 1, ¢4 < 1). The model has 20 parameters,
including 6 2, ¢y, ¢y, 03 and .

In the specification given above, we follow the
microeconomic analysis of Sealey and Lindley (1977)
who view the bank as using labour, physical capital, and
financial capital (mainly deposits) to produce earning
assets. Thus, we use deposits and other borrowed money
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asinputs (representing financial capital used), and income
generating money as the aggregate product of a bank
branch. This approach (often called the intermediation
approach) has been adopted in many empirical studies,
using econometric as well as mathematical programming
tools; see Akhaiven et al. (1997), Altunbas et al. (2000),
Berger et al. (1997), Cebenoyan et al. (1993), English et
al. (1993), Grabowski et al. (1993), Hassan et al. (1990),
Hughes, Mester (1993), Kaparakis et al. (1994), Mester
(1987; 1993), Muldur, Sassenou (1993), Noulas et al.
(1990), Zardokoohi, Kolari (1994).

As a consequence of the approach we follow, the
variable cost includes both interest and operating costs.
Our aggregate product Q comprises loans to individuals,
commercial and industrial loans, and the excess of
deposits over loans (if positive, i.e. if s;, = 1). The latter
component reflects the fact that branches operate within
the bank and their excessive deposits can be used by
those branches which lack funds for loans (s;, = 0). In
fact, all observed branches tended to specialize either
in the acquisition of financial capital from depositors
or in lending funds. Branches from the first group
(depository branches, s;, = 1) provided extra funds,
which were used by branches from the other group.
These funds were provided at a constant price (related
to prices on the interbank market), fixed by the bank
and only used to correct the calculation of the operating
profit of a branch. Thus, for a depository branch, the
volume of its excess funds can be treated as a product
because it increased the calculated profit of that branch.
On the other hand, this money was used as input by
the branches that lacked funds for loans; its price was
constant over branches and used to correct downwards
the calculation of the operating profit of branches
specializing in lending funds.

Our measure of variable cost includes cost of
computers, software and other goods and services
purchased from outside suppliers but their prices do
not appear as explanatory variables in our specification.
This is a consequence of the fact that these prices can
be treated as constant (over the whole year and all the
branches) as main purchases were decided on the level
of the bank which chose a supplier (of e.g. hardware or
software) once during several months. Thus, the effect
of these prices on the variable cost is taken by five of the
parameters f; (1 = 0, 1, 2, 3, 4). However, the elasticities
of VC with respect to Wp, W;, Q and K calculated
from the full translog model remain unaffected by
unobservability of constant prices and are the same
as calculated from (14). Moreover, homogeneity with
respect to all prices is automatically fulfilled by (14).

Other regularity conditions which should be
imposed on our specification include monotonicity
(with respect to Q and all prices) and concavity (in all
prices). Under any continuous prior distribution on the
parameter space, monotonicity with probability one is
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equivalent to positivity of elasticities of VC with respect
to Q, Wp and Wy, plus the condition that the sum of
elasticities with respect to Wp, and W is less than one:

n(VC|Q)=B, +B W, +B,InW, +B,,InK +28,,In0 >0,
n(VC|W,) =P, +B;InW, +BInQ+p,InK +2p, InW, >0,
n(rC|W,) =B, +BsInW, +B,InQ+B,InK +2B,Ini, >0,
n(VC| W, )+n(VC|w,)<1.

(15)

The latter condition assures that VC is increasing
in unobservable (constant) prices. Remind that the
elasticities with respect to prices are equal to optimal
shares (of production factors) in variable cost. We
impose the monotonicity and concavity conditions
on an “average” branch, that is a hypothetical branch
with average (over time and branches) values of logs of
K, Q, Wp and W}. Concavity in input prices is equivalent
to negative semi-definiteness of the matrix of second
order derivatives of VC with respect to all three prices.
Since this matrix is singular, it is negative semi-definite
iff all three first order principal minors are non-positive
and all three second order principal minors are non-
negative; see e.g. Simon, Blume (1994). Under any
continuous prior distribution on the parameter space,
prior and posterior probabilities of equalities are zero.
Thus, concavity in prices is assured with (both prior
and posterior) probability one iff the first two leading
principal minors change sign, i.e. if

2B, +1’1(VC ‘ WD)'(TI(VC ‘ WD)71)< 0,
@By +n(7C[1,)-(n(C [,)=1))- (2B, +n(VC |, )-((C [W,)-1)
~B,+n(C|w,)nc|w, ) >o. 16)

It is easy to prove that, given(16) and positivity of
elasticities, all principal minors (not only the leading
principal minors) have correct signs.

We impose regularity at a particular point in
the space of explanatory variables (at the point
should best
approximate the unknown cost function). Although

where our translog specification

economic regularity could be imposed at many
points, that would lead to reducing flexibility of the
translog approximation and a serious increase in
computational burden.

In fact, the first three restrictions in (15) are not
binding for our data set. Moreover, the elasticities with
respect to Q and Wp are clearly positive for all 58
branches and the elasticity with respect to W always
has a positive posterior mean. The fourth restriction
is binding, as will be shown below; see Table 2 and
Figure 4. Given the monotonicity alone, the posterior
probability of concavity is only 0.11, so the two
inequalities presented in (16) are obviously binding.
Salvanes and Tjgtta (1998) illustrate importance of
the concavity restrictions for the interpretation of the
results of cost function estimation.
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Figure I. Gibbs estimates of the posterior mean and standard deviation of By as functions
of the number of passes (for two different runs)
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In our short-run model we represent physical
capital (treated as fixed input) by the office space used
by the branches. We have also estimated specifications
with K defined as the book value of buildings and
offices, obtaining very similar results.

As regards the prior hyperparameters, we set r* = 0.7
which would be the prior median of efficiency in the CED
specification (m =1, no systematic differences in cost
efficiency). Thus, in our VED specification with m = 4 we
assume prior median efficiency even lower than 0.7 (about
0.53, as obtained by Marzec (2000) for average values of
Sz Si3, Sig)- Other values of r* from the interval [0.5, 0.9]
have no new consequences for our inference on technology
but show some (although small) influence on the efficiency
analysis discussed in the next section. For precision of the
Normal error term, we take ny = ¢y = 10" which leads to
a very diffuse Gamma prior distribution (with mean 1 and
variance 2x109) reflecting little prior knowledge about this
parameter. Assuming the improper prior corresponding to
ny = ¢y = 0 leads to the same posterior results.

The Gibbs sampler presented in the
section requires starting values for p and z. We tried
different vectors p(¥) and z%), receiving virtually the
same results after about 100,000 passes. In particular,
in some runs we used the same zj(o) (e.g., 0.3) for all
i and we calculated B(O) from the OLS formula (11).
Convergence to the posterior distribution is illustrated
in Figures 1 and 2, which show changes (in two
Gibbs runs starting from very different initial values)
of the Monte Carlo estimates of posterior means
and standard deviations for two parameters with

previous

particularly slow convergence. Note that the estimates
of standard deviations are closer to each other than
the estimates of posterior means. Even in the latter
case, however, the differences in the final estimates
are as small as 1% of the corresponding posterior
standard deviation.

The posterior results for our 78-dimensional vector
of unknown parameters and inefficiency terms were
obtained using one long run of 500,000 Gibbs passes,

Figure 2. (Gibbs estimates of the posterior mean and standard deviation of ys as functions
of the number of passes (for two different runs)
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Table |. Posterior means and standard deviations of the parameters of model (14) (VED

with m=4; r* = 0.7)

Parameter Variable E(+|data) D(+|data)
Bo Constant -2.178 2.355
By InWpy 1.263 0.425
By InWp, 0.383 0.345
B3 Lng 0.619 0.225
By Lng -0.388 0.178
Bs InWp InWy, -0.040 0.039
Bg InWp InQ -0.014 0.025
B, InWp InK 0.048 0.023
Bg InWL InQ -0.032 0.015
By InWL InK 0.005 0.011
B1o InQ InK -0.012 0.011
B11 (InWD)? -0.048 0.035
B12 (InWL)2 0.029 0.021
B13 (InQ)? 0.017 0.008
Bia (InK)? 0.035 0.009
[ Constant (s;;=1) 11.522 3.007
[ siy 1.440 0.397
[ sig 0.820 0.256
A Siy 0.949 0.393
o? 2.83 X104 0.38x 104

Source: Authors’ caleulations.

after discarding 100,000 initial draws. Tables 1, 2 and 3
present the posterior means and standard deviations of the
parameters of the frontier cost function, the elasticities for
the “average” branch and the elasticities for all branches
(ordered by decreasing production), respectively. The
individual elasticities in Table 3 are estimated assuming
time averages for explanatory variables (expressed in logs).
As regards factor prices, the interest rate on deposits (i.e.
the price of financial capital) exerts the strongest influence
on variable cost; the role of the price of labour is much
smaller. Note that we can write the sum of elasticities
with respect to those factor prices that are constant over
branches as one minus the sum of elasticities with respect
to Wp and W;. Figures 3 and 4 show the (very sharp)
marginal posterior densities of the variable cost elasticities
for the “average” branch.?

Table 3 clearly shows that elasticities vary a lot
over branches, making the Cobb-Douglas specification
completely inadequate. Also the functional form

3 In fact, we performed several different very long Gibbs runs in order to check
numerical stability of our results. The striking similarity of all posterior cha-
racteristics in all runs illustrates convergence of the Gibbs sampler.

suggested by Nerlove (1963) and used by Christensen,
Greene (1976), BKOS (1994) and Osiewalski, Marzec
(1998), which is based on the Cobb-Douglas specification
but permits returns to scale to vary with Q, is not
supported by the data. Let g*= (B5 Bg B7 Bg Pg B10 B11 P12
B14); since the marginal posterior of g* is approximately
Normal with mean E(g*|y, X, S) and covariance matrix
V(g* |y, X, S), the posterior of <(g*;y, X, S) =[p* -
E(* |y, X, ) V(" | v, X, S) [p* - E(B" | ¥, X, S)]

is close to the chi-square distribution with 9 degrees
of freedom. The value t(0;y, X, S), corresponding to
the simpler functional form, is equal to 256,381 and
lies very far in the tail of the posterior density of ©(f*;
vy, X, S).

From Table 1 we see that the elasticity of VC with
respect to Q, n(VC | Q) increases significantly with Q
(B13 > 0) but decreases with W}, (Bg < 0); the elasticity
of VC with respect to W increases with K (3, > 0); the
elasticity of VC with respect to W} decreases with Q
(Bg < 0); the elasticity of VC with respect to K increases
significantly with K (8,4 > 0) and Wy, (B, > 0). Figure 5
presents the posterior mean of n(VC | Q) as a function

Table 2. Posterior means and standard deviations of elasticities for the “average”

branch (VED, m = 4; r* = 0.7)

n(VC|Wp) n(VC|Wy) n(VC|Q n(VCIK) 1-n(VC|Wy) —n(VC|Wp)
Means 0.797 0.186 0.863 0.036 0.017
Standard deviations (0.013) (0.010) (0.012) (0.009) (0.011)

Source: Authors’ calculations.
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Table 3. Posterior means and standard deviations (in parentheses) of elasticities for all
branches

i n(VCIWp); n(VCIW); Rl n(VCIQ) n(VCIK)
1 0.793 (0.051) 0.126 (0.029) 0.081 (0.046) 0.906 (0.034) 0.091 (0.027)
2 0.814 (0.035) 0.146 (0.025) 0.040 (0.036) 0.914 (0.033) 0.035 (0.022)
3 0.720 (0.059) 0.134 (0.033) 0.146 (0.056) 0.925 (0.043) | -0.067 | (0.040)
4 0.823 (0.028) 0.160 (0.018) 0.017 (0.026) 0.889 (0.024) 0.080 (0.019)
5 0.800 (0.031) 0.155 (0.018) 0.045 (0.028) 0.890 (0.025) 0.068 (0.019)
6 0.805 (0.028) 0.164 (0.017) 0.032 (0.026) 0.881 (0.022) 0.084 (0.018)
7 0.843 (0.038) 0.189 (0.029) -0.031 (0.035) 0.898 (0.027) 0.002 (0.020)
8 0.820 (0.024) 0.166 (0.016) 0.014 (0.021) 0.885 (0.021) 0.068 (0.016)
9 0.834 (0.035) 0.156 (0.020) 0.010 (0.031) 0.872 (0.020) 0.137 (0.027)
10 0.847 (0.030) 0.168 (0.017) 0.014 | (0.026) 0.869 (0.018) 0.127 (0.024)
11 0.801 (0.021) 0.167 (0.015) 0.031 (0.020) 0.889 (0.022) 0.023 (0.016)
12 0.775 (0.052) 0.145 (0.029) 0.080 (0.045) 0.863 (0.024) 0.131 (0.027)
13 0.832 (0.022) 0.177 (0.014) 20.010 | (0.019) 0.870 (0.016) 0.087 (0.016)
14 0.701 (0.059) 0.148 (0.029) 0.151 (0.050) 0.894 (0.033) | -0.045 | (0.033)
15 0.837 (0.021) 0.175 (0.014) 0.012 | (0.018) 0.873 (0.016) 0.080 (0.015)
16 0.824 (0.025) 0.170 (0.015) 0.006 (0.022) 0.865 (0.016) 0.108 (0.019)
17 0.794 (0.025) 0.171 (0.015) 0.035 (0.022) 0.862 (0.015) 0.085 (0.015)
18 0.902 (0.045) 0.194 (0.023) 0.096 | (0.039) 0.857 (0.018) 0.138 (0.028)
19 0.767 (0.026) 0.170 (0.015) 0.064 (0.022) 0.876 (0.020) 0.015 (0.016)
20 0.883 (0.038) 0.194 (0.021) 0.076 | (0.032) 0.869 (0.017) 0.078 (0.017)
21 0.784 (0.022) 0.175 (0.013) 0.041 (0.019) 0.863 (0.015) 0.062 (0.013)
22 0.812 (0.015) 0.180 (0.011) 0.008 (0.012) 0.870 (0.014) 0.046 (0.010)
23 0.751 (0.035) 0.183 (0.023) 0.066 (0.035) 0.893 (0.028) | -0.087 | (0.035)
24 0.826 (0.024) 0.174 (0.016) 0.000 (0.023) 0.856 (0.013) 0.113 (0.019)
25 0.777 (0.019) 0.193 (0.016) 0.030 (0.018) 0.874 (0.018) | -0.020 | (0.019)
26 0.804 (0.022) 0.187 (0.013) 0.009 (0.022) 0.848 (0.012) 0.100 (0.016)
27 0.854 (0.027) 0.197 (0.016) 0.050 | (0.023) 0.862 (0.013) 0.067 (0.012)
28 0.713 (0.041) 0.180 (0.022) 0.107 (0.037) 0.878 (0.026) | -0.065 | (0.032)
29 0.769 (0.026) 0.198 (0.019) 0.034 (0.025) 0.877 (0.021) | -0.054 | (0.026)
30 0.768 (0.022) 0.180 (0.013) 0.052 (0.019) 0.863 (0.015) 0.023 (0.013)
31 0.822 (0.016) 0.186 (0.012) 0.008 | (0.016) 0.856 (0.010) 0.078 (0.012)
32 0.859 (0.032) 0.194 (0.018) -0.053 (0.031) 0.842 (0.014) 0.140 (0.026)
33 0.804 (0.028) 0.200 (0.020) 0.004 | (0.026) 0.878 (0.020) | -0.040 | (0.022)
34 0.786 (0.021) 0.200 (0.016) 0.014 (0.019) 0.870 (0.017) | -0025 | (0.019)
35 0.778 (0.017) 0.190 (0.012) 0.032 (0.015) 0.866 (0.014) 0.000 (0.014)
36 0.781 (0.018) 0.186 (0.013) 0.034 (0.016) 0.869 (0.015) | -0.004 | (0.015)
37 0.830 (0.020) 0.201 (0.012) -0.031 (0.019) 0.850 (0.009) 0.063 (0.009)
38 0.757 (0.027) 0.184 (0.017) 0.059 (0.024) 0.858 (0.014) 0.004 (0.015)
39 0.835 (0.021) 0.201 (0.013) 0.035 | (0.020) 0.850 (0.009) 0.056 (0.008)
40 0.873 (0.035) 0.204 (0.019) 0.077 | (0.033) 0.839 (0.014) 0.115 (0.021)
41 0.766 (0.027) 0.190 (0.018) 0.045 (0.027) 0.839 (0.012) 0.063 (0.011)
42 0.744 (0.033) 0.197 (0.019) 0.058 (0.030) 0.868 (0.020) | -0.070 | (0.030)
43 0.805 (0.018) 0.209 (0.012) 20.014 | (0.018) 0.844 (0.009) 0.040 (0.006)
44 0.795 (0.020) 0.194 (0.015) 0.011 (0.022) 0.840 (0.009) 0.068 (0.009)
45 0.771 (0.025) 0.213 (0.017) 0.016 (0.023) 0.855 (0.014) | -0033 | (0.020)
46 0.747 (0.031) 0.188 (0.019) 0.066 (0.028) 0.851 (0.014) 0.001 (0.016)
47 0.805 (0.018) 0.206 (0.012) -0.011 (0.019) 0.845 (0.009) 0.031 (0.007)
48 0.842 (0.025) 0.205 (0.016) 0.047 | (0.027) 0.837 (0.011) 0.082 (0.013)
49 0.750 (0.034) 0.195 (0.020) 0.056 (0.032) 0.865 (0.018) | -0.066 | (0.029)
50 0.750 (0.029) 0.197 (0.018) 0.053 (0.027) 0.843 (0.012) 0.009 (0.013)
51 0.762 (0.034) 0.216 (0.021) 0.022 (0.032) 0.857 0.018) | -0073 | (0.029)
52 0.789 (0.021) 0.207 (0.015) 0.004 (0.022) 0.843 (0.010) 0.011 (0.010)
53 0.723 (0.041) 0.194 (0.023) 0.083 (0.037) 0.852 (0.018) | -0.050 | (0.027)
54 0.826 (0.032) 0.226 (0.018) 0.052 | (0.031) 0.827 (0.013) 0.054 (0.009)
55 0.742 (0.035) 0.205 (0.021) 0.053 (0.033) 0.850 (0.016) | -0.057 | (0.026)
56 0.824 (0.034) 0.222 (0.022) 0.045 | (0.039) 0.810 (0.018) 0.108 (0.019)
57 0.766 (0.031) 0.220 (0.021) 0.014 (0.034) 0.821 (0.014) 0.012 (0.012)
58 0.820 (0.050) 0.254 (0.030) 0.073 | (0.054) 0.792 (0.026) 0.056 (0.017)
Awerages of posterior means and standard deviations
0797 | (0.030) | o0.186 | (0.018) | 0983 | (0028 | 0863 | (0018) | 0.036 | (0.019)

Source: Authors’ calculations.
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Figure 3. Posterior distributions of
elasticities of VO with respect to K and @
for the “average” branch
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Figure 4. Posterior distributions of
elasticities of VC with respect to input
prices for the “average” branch
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Figure 5. Posterior means (and standard
deviations) of the elasticity of VC with
respect to Q as a function of Q alone (for
average values of logs of other variables)

Source: Authors’ calculations.

Figure 6. Returns to scale estimates for all
branches (plotted against the output level)
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of QQ alone, keeping the other three arguments fixed at
the ‘average’ branch levels; we also present the posterior
standard deviations at particular points. The variability of
n(VC | Q) is closely related to the variability of returns to
scale, defined as RTS=(1-dlnVC/olnK)/(9lnVC/oInQ); RTS,
evaluated for all branches at the posterior means of p; is
presented in Figure 6. For most branches, our estimates of
RTS are greater than one. Since all branches made profits
in the observed year, most of them could have been more
profitable just by increasing scale of their activities. This
holds especially for small branches.

The positive elasticity with respect to the fixed
factor, observed in Figure 7 for most branches (especially
the ones with very large office space), suggests that these
branches are far from long-run cost minimisation. This
means that short-run cost efficiency, calculated on the

Source: Authors’ caleulations.

Figure 7. Posterior means of fixed input
elasticities for all branches (plotted
against the fixed input level)
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Source: Authors’ calculations.
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basis of variable costs and presented in the next section,
is higher than long-run efficiency of branches with too
much office space.

5. Inference on Short-Run Cost Efficiency

We assumed that a priori there is more than 50% chance
that variable cost efficiency of any given branch is
below r* = 0.7. Our data set points at much higher
efficiency and leads to the average posterior mean of
r; equal to 0.919 with 0.017 as the average posterior
standard deviation. However, the individual posterior

Financial Markets and Institutions 39

means (and standard deviations) are quite spread,
ranging from 0.768 (0.016) for branch No. 58 to 0.996
(0.004) for branch No. 56; see Table 4. As branch No.
56 has significantly positive elasticity of variable cost
with respect to fixed input, its long-run cost efficiency
is probably much lower. Therefore, we can treat branch
No. 45 as the leading branch, with almost as high
short-run cost efficiency as branch No. 56, but with the
negative posterior mean of the elasticity with respect to
K. Other branches with very high short-run efficiencies
and negative elasticities with respect to K are branches
No. 55, 33, 42, 34, 36 and 49. They all belong to the
group of smaller branches.

Table 4. Posterior means (and standard deviations) for h; and individual efficiency levels

(VED with m = 4; r* = 0.7)
i Isjp | si3 | Sia A T i 1sjz8i3|Sia N I
1 11 |1 0.105 (0.053) 0.895 (0.036) 30100 0.066 (0.016) 0.857 (0.014)
2 0| 1 0 0.119 (0.034) 0.898 (0.030) 31/o0flofo 0.093 (0.025) 0.956 (0.015)
3 0 1 0 0.119 (0.034) 0.871 (0.052) 3210(0|0 0.093 (0.025) 0.909 (0.017)
4 0| 1|1 0.144 (0.067) 0.899 (0.021) 33100 0.066 (0.016) 0.974 (0.013)
5 0| 1 0 0.119 (0.034) 0.891 (0.021) 34|loflofo 0.093 (0.025) 0.966 (0.013)
6 0 1 0 0.119 (0.034) 0.926 (0.020) 35| 1 0 0.066 (0.016) 0.967 (0.014)
7 0| 1| o0 0.119 (0.034) 0.984 (0.014) 36(0fofo 0.093 (0.025) 0.960 (0.014)
8 0| 1 0 0.119 (0.034) 0.845 (0.017) 371100 0.066 (0.016) 0.837 (0.013)
9 0| 1 1 .144 (0.067) 0.958 (0.025) 381|000 0.066 (0.016) 0.946 (0.014)
10 0| 1| o0 0.119 (0.034) 0.895 (0.020) 390100 0.066 (0.016) 0.949 (0.015)
11 0 1 0 0.119 (0.034) 0.854 (0.016) 40| 1[0 |0 0.066 (0.016) 0.909 (0.014)
12 0| 1 1 0.144 (0.067) 0.879 (0.025) 411100 0.066 (0.016) 0.909 (0.014)
13 0 1 0 0.119 (0.034) 0.836 (0.014) 4211100 0.066 (0.016) 0.969 (0.018)
14 1111 o0 0.088 (0.031) 0.840 (0.033) 43|1]0]0 0.066 (0.016) 0.946 (0.014)
15 0| 1 1 0.144 (0.067) 0.841 (0.014) 44100 0.066 (0.016) 0.963 (0.014)
16 0 1 0 0.119 (0.034) 0.959 (0.017) 4511100 0.066 (0.016) 0.992 (0.007)
17 1111 o0 0.088 (0.031) 0.976 (0.015) 46|1]0]0 0.066 (0.016) 0.949 (0.014)
18 0| 1 0 0.119 (0.034) 0.977 (0.020) 4711010 0.066 (0.016) 0.944 (0.014)
19 0 1 0 0.119 (0.034) 0.838 (0.015) 4811100 0.066 (0.016) 0.911 (0.013)
20 0| 1| o0 0.119 (0.034) 0.854 (0.015) 49|1]0]0 0.066 (0.016) 0.954 (0.017)
21 0 1 0 0.119 (0.034) 0.965 (0.016) 501010 0.066 (0.016) 0.962 (0.013)
22 1] 1 0 0.088 (0.031) 0.904 (0.015) 51100 0.066 (0.016) 0.918 (0.017)
23 0 1 0 119 (0.034) 0.918 (0.027) 521110|0 0.066 (0.016) 0.950 (0.013)
24 111 |1 0.105 (0.053) 0.885 (0.015) 530100 0.066 (0.016) 0.870 (0.016)
25 o| o | o 0.093 (0.025) 0.894 (0.013) 541|010 0.066 (0.016) 0.934 (0.014)
26 ol ol o 0.093 (0.025) 0.982 (0.013) 550100 0.066 (0.016) 0.985 (0.012)
27 0 0 0 0.093 (0.025) 0.834 (0.014) 56| 1(0]0 0.066 (0.016) 0.996 (0.004)
28 o ol 1 0.116 (0.063) 0.930 (0.025) 570110 0.066 (0.016) 0.995 (0.005)
29 0| o | o 0.093 (0.025) 0.936 (0.016) 58100 0.066 (0.016) 0.768 (0.016)
Average for branches with s;, = 1, 5,3 = 1 and sj3 = 1 0.890 (0.026)
Average for branches with s;, = 0, s;3 = 0 and s;4 = 0 0.930 (0.014)
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i Siz | Si3 | Sia Aj rj

i (sj5|8i3|sia Aj rj

Average for branches with s;, = 1, s;3 =0 and s;, = 0

0.934 (0.013

Average for branches with s;, = 0, s;3 = 1 and s;4 = 0

0.901 (0.021

Average for branches with s;y = 0, s;3 = 0and sy = 1

Average for branches with s;, = 1, s;3 = 1and s;3 = 0

0.906 (0.021

Average for branches with s;, = 0, s;3 = 1and s;3 = 1

( )
(0.021)
0.930 (0.025)
( )
( )

0.894 (0.021

Average for branches with s;y = 1, s;3 = 0and s;y = 1 -

Average for branches with sj, = 1 0.928 (0.015)
Average for branches with s;, = 0 0.909 (0.019)
Average for branches with s;3 = 1 0.899 (0.021)
Average for branches with s;3 = 0 0.933 (0.014)
Average for branches with s;, = 1 0.898 (0.023)
Average for branches with s;y = 0 0.922 (0.016)

Average for all branches 0.919 (0.017)

Source: Authors’ calculations.

It is important to note that our inference on
individual efficiency levels is not sensitive to prior
assumptions. Taking r* = 0.9 (instead of 0.7) leads to
only slightly higher posterior means (0.922 on average,
instead of 0.919) and almost the same ranking of
branches. The correlation coefficient between the
individual posterior means (for r* = 0.7 and r* = 0.9) is
0.99978, and the Spearman rank correlation coefficient
is 0.99951.

While

is insensitive to changes in r*, values of this prior

inference on individual efficiency
hyperparameter exert influence on the posterior results
for the parameters v = ln(q)j], which parameterize the
sampling mean A; of inefficiency (individual effect) z;;
see (2). Table 5 shows the posterior means and standard
deviations of yj's under three very different values of
r* (one of them, 0.5, is too low to be reasonable). The
positive, although decreasing with r*, posterior mean
of y, would suggest that “depository” branches (s;; = 1)
tend to be more efficient. The negative (decreasing with
r*) posterior means of y; and y, would mean that large
branches (s;3 = 1) and branches that have subbranches

(sjs = 1) tend to be less efficient. The posterior means

of y; (j = 2, 3, 4) confirm our initial conjectures. This,
however, should be interpreted with caution as the
posterior standard deviations of y; are very large. In
order to test possible systematic differences in cost
efficiency, we use the Bayesian Lindley type test based
on Highest Posterior Density (HPD) regions.

Since the marginal posterior distribution of
7* = (yy v3 v4) is approximately Normal with mean
E(7*| y, X, S) and covariance matrix V(7 *| y, X, S), the
quadratic form (¥ *;y, X, S)=[¥*-E(r*| y, X, S)' V!
(r*1yv. X, S)[7*-E(r*| v, X,S)] has the posterior
distribution close to the chi-square distribution with 3
degrees of freedom. Figure 8 presents the exact posterior
density of ©(¥*;y, X, S), obtained as a by-product of
the Gibbs sampler for both r* = 0.7 and r* = 0.9. The
tested value of y*, i.e. 0, leads to ©(0; y, X, S) equal to
3.23 under r* = 0.7 and to 3.34 under r* = 0.9. In both
cases there is no reason to reject ¥* = 0 as 1(0; y, X, S)
lies in HPD intervals of probability content at least 0.65.
This exact Bayesian counterpart of the approximate
chi-square test shows that none of the variables s;;
(j = 2, 3, 4) introduced in our VED specification helps
in explaining differences in individual short-run cost

Table 5. Posterior means and standard deviations of y (VED with m = 4)

r*=0.5 r*=10.7 r* =09
E(|y.X.S) D(|y.X.S) E(|y.X.S) D(|y.X.S) E(|y.X.S) D'|yX,S)
Y1 2.186 0.250 2.411 0.261 2.639 0.278
Y2 0.475 0.269 0.327 0.276 0.171 0.285
Y3 -0.105 0.308 -0.247 0.313 -0.397 0.319
Ya -0.133 0.418 -0.135 0.415 -0.146 0.413

Source: Authors’ calculations.
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Figure 8. Posterior densities of t(yv*; 'y, X, S)
forr* = 0.7and r* = 0.9

— PhEYXI)yXS) forr*=0.9

— plly*;yX.9) [y.X,S) for r*=0.7

Source: Authors’ calculations.

efficiency. Thus, these differences can be considered
random and the simpler CED specification (m = 1, s;; = 1)
can be adopted. In fact, the CED model leads to very
similar posterior results on technology and individual
cost efficiency.

The CED specification treats all individual effects
z; (given the parameters of the model) as independent
drawings from the same Exponential distribution with
mean A = 1/¢q; see Osiewalski (2001), chapter 7. Using
the posterior density of A (with mean 0.086 and standard
deviation 0.015) we can integrate this parameter out and
obtain the marginal posterior distribution of efficiency
of an unobserved branch (the predictive distribution for
individual efficiency):

o

v.X)=r,'[ £l 00ry)

0

LA )p(2]y. XA (17)

P(’ I3

approximated (using the Gibbs sampler) by

plr |y, X)= ;' ﬁgfc(—ln(rfjl,(ﬂ(”)fl)

This rather diffuse distribution, presented in
Figure 9, gives the overall picture of the short-run
cost efficiency of the analysed branches. Its mean,
0.921, is the same as the simple average of individual
posterior means (0.921) but its standard deviation is
very large (0.075). Thus, the posterior distribution of
1y covers results on efficiency for all branches - from
the least to the most efficient. Figure 9 also presents
the marginal posterior densities p(r;| y, X) for the
branches with the maximum, minimum and average
posterior means of r;. These densities are quite sharp
as we use panel data and efficiencies are treated as
individual effects.
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Figure 9. Marginal posterior densities of
cost efficiency r; (CED, r* = 0.7)

- maximum E(rjly,X)
—— average E(rily.X)
—— minimum E(rily.X)

—— unobserved ()

04 045 05 055 06 065 07 075 08 08 09 095 1

Source: Authors’ calculations.

6. Conclusion

In this paper we have reviewed the Bayesian analysis of
stochastic frontier models, arguing that Gibbs sampling
can be used to greatly reduce the computational burden
inherent to this analysis. Following KOS (1994b; 1997),
we have shown how the posterior conditional densities
can be used to set up a Gibbs sampler in the case of in-
efficiencies treated as individual effects. The structure
of the Gibbs sampler follows naturally from viewing
the inefficiency terms as additional parameters in a re-
gression model; see Ferndndez et al. (1997). In important
special cases all conditionals are Gamma or truncated
Normal distributions, which leads to enormous com-
putational gains.

We have applied the Bayesian methodology to
make posterior inference on the technology and short-
run cost efficiency of 58 branches of a Polish bank.
Our results, based on panel data from 4 quarters of
one year and a translog variable cost frontier, indicate
increasing returns to scale (varying with the branch
output level) and no systematic differences in efficiency
that could be explained by the three dummy variables
under consideration. The example also illustrates that
cooperation with Bayesian econometricians may create
important insights into the economic functioning of the
bank. The management may learn not only about the
basic microeconomic characteristics of each branch,
but also about the branch efficiency and its possible
determinants.

Our cost model has been formulated in terms of one
aggregate product, Q, but extensions to more products are
straightforward. Marzec (2000) and Marzec, Osiewalski
(2001) present posterior inference for the case where
Q is split into two categories: commercial loans and
other products. The basic results on technology and
efficiency remain unchanged (with respect to the case
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of one aggregate product) but, of course, inference on  of specialisation requires new measures, we have not
scope economies is also possible at almost negligible  discussed these issues in the present paper, which is
additional computational cost. Since, as we argue in  focused mainly on the use of Bayesian statistical methodology
our other work, inference on scope economies or effects  in cost efficiency analysis for the banking sector.
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